Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cells ; 12(5), 2023.
Article in English | EuropePMC | ID: covidwho-2267788

ABSTRACT

Several reports have indicated that SARS-CoV-2 infection displays unexpected mild clinical manifestations in people with cystic fibrosis (pwCF), suggesting that CFTR expression and function may be involved in the SARS-CoV-2 life cycle. To evaluate the possible association of CFTR activity with SARS-CoV-2 replication, we tested the antiviral activity of two well-known CFTR inhibitors (IOWH-032 and PPQ-102) in wild type (WT)-CFTR bronchial cells. SARS-CoV-2 replication was inhibited by IOWH-032 treatment, with an IC50 of 4.52 μM, and by PPQ-102, with an IC50 of 15.92 μM. We confirmed this antiviral effect on primary cells (MucilAirTM wt-CFTR) using 10 μM IOWH-032. According to our results, CFTR inhibition can effectively tackle SARS-CoV-2 infection, suggesting that CFTR expression and function might play an important role in SARS-CoV-2 replication, revealing new perspectives on the mechanisms governing SARS-CoV-2 infection in both normal and CF individuals, as well as leading to potential novel treatments.

2.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2267789

ABSTRACT

Several reports have indicated that SARS-CoV-2 infection displays unexpected mild clinical manifestations in people with cystic fibrosis (pwCF), suggesting that CFTR expression and function may be involved in the SARS-CoV-2 life cycle. To evaluate the possible association of CFTR activity with SARS-CoV-2 replication, we tested the antiviral activity of two well-known CFTR inhibitors (IOWH-032 and PPQ-102) in wild type (WT)-CFTR bronchial cells. SARS-CoV-2 replication was inhibited by IOWH-032 treatment, with an IC50 of 4.52 µM, and by PPQ-102, with an IC50 of 15.92 µM. We confirmed this antiviral effect on primary cells (MucilAirTM wt-CFTR) using 10 µM IOWH-032. According to our results, CFTR inhibition can effectively tackle SARS-CoV-2 infection, suggesting that CFTR expression and function might play an important role in SARS-CoV-2 replication, revealing new perspectives on the mechanisms governing SARS-CoV-2 infection in both normal and CF individuals, as well as leading to potential novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Antiviral Agents
3.
World J Gastroenterol ; 28(44): 6282-6293, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2163756

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen responsible for pandemic coronavirus disease 2019 (COVID-19). It is a highly contagious virus which primarily affects the respiratory tract, nevertheless, the lungs are not the only target organs of the virus. The intestinal tract could represent an additional tropism site for SARS-CoV-2. Several observations have collectively suggested that enteric infections can occur in COVID-19 patients. However, the detection of viral RNA in gastrointestinal (GI) tissue samples has not been adequately investigated and results are conflicting. AIM: To detect the presence of SARS-CoV-2 RNA in intestinal mucosa samples and to evaluate histological features. METHODS: The COVID-19 patients hospitalized at an Italian tertiary hospital from April 2020 to March 2021 were evaluated for enrollment in an observational, monocentric trial. The study population was composed of two groups of adult patients. In the first group (biopsy group, 30 patients), patients were eligible for inclusion if they had mild to moderate disease and if they agreed to have a rectal biopsy; in the second group (surgical specimen group, 6 patients), patients were eligible for inclusion if they underwent intestinal resection during index hospitalization. Fifty-nine intestinal mucosal samples were analyzed. RESULTS: Viral RNA was not detectable in any of the rectal biopsies performed (0/53). Histological examination showed no enterocyte damage, but slight edema of the lamina propria with mild inflammatory lymphoplasmacytic infiltration. There was no difference in inflammatory infiltrates in patients with and without GI symptoms. SARS-CoV-2 RNA was detected in fecal samples in 6 cases out of 14 cases examined (42.9%). In the surgical specimen group, all patients underwent emergency intestinal resection. Viral RNA was detected in 2 surgical specimens of the 6 examined, both of which were from patients with active neoplastic disease. Histological examination also pointed out abundant macrophages, granulocytes and plasma cells infiltrating the muscular layer and adipose tissue, and focal vasculitis. CONCLUSION: Mild-moderate COVID-19 may not be associated with rectal infection by the virus. More comprehensive autopsies or surgical specimens are needed to provide histological evidence of intestinal infection.


Subject(s)
COVID-19 , Adult , Humans , Intestines , Patients , RNA, Viral , SARS-CoV-2
4.
Cells ; 11(8)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792801

ABSTRACT

People with cystic fibrosis should be considered at increased risk of developing severe symptoms of COVID-19. Strikingly, a broad array of evidence shows reduced spread of SARS-CoV-2 in these subjects, suggesting a potential role for CFTR in the regulation of SARS-CoV-2 infection/replication. Here, we analyzed SARS-CoV-2 replication in wild-type and CFTR-modified human bronchial epithelial cell lines and primary cells to investigate SARS-CoV-2 infection in people with cystic fibrosis. Both immortalized and primary human bronchial epithelial cells expressing wt or F508del-CFTR along with CRISPR/Cas9 CFTR-ablated clones were infected with SARS-CoV-2 and samples were harvested before and from 24 to 72 h post-infection. CFTR function was also inhibited in wt-CFTR cells with the CFTR-specific inhibitor IOWH-032 and partially restored in F508del-CFTR cells with a combination of CFTR modulators (VX-661+VX-445). Viral load was evaluated by real-time RT-PCR in both supernatant and cell extracts, and ACE-2 expression was analyzed by both western blotting and flow cytometry. SARS-CoV-2 replication was reduced in CFTR-modified bronchial cells compared with wild-type cell lines. No major difference in ACE-2 expression was detected before infection between wild-type and CFTR-modified cells, while a higher expression in wild-type compared to CFTR-modified cells was detectable at 72 h post-infection. Furthermore, inhibition of CFTR channel function elicited significant inhibition of viral replication in cells with wt-CFTR, and correction of CFTR function in F508del-CFTR cells increased the release of SARS-CoV-2 viral particles. Our study provides evidence that CFTR expression/function is involved in the regulation of SARS-CoV-2 replication, thus providing novel insights into the role of CFTR in SARS-CoV-2 infection and the development of therapeutic strategies for COVID-19.


Subject(s)
COVID-19 , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , SARS-CoV-2
5.
J Microbiol Methods ; 186: 106259, 2021 07.
Article in English | MEDLINE | ID: covidwho-1249029

ABSTRACT

The prevalence and microbiology of concomitant respiratory bacterial infections in patients with SARS-CoV-2 infection are not yet fully understood. In this retrospective study, we assessed respiratory bacterial co-infections in lower respiratory tract samples taken from intensive care unit-hospitalized COVID-19 patients, by comparing the conventional culture approach to an innovative molecular diagnostic technology. A total of 230 lower respiratory tract samples (i.e., bronchial aspirates or bronchoalveolar lavages) were taken from 178 critically ill COVID-19 patients. Each sample was processed by a semi-quantitative culture and by a multiplex PCR panel (FilmArray Pneumonia Plus panel), allowing rapid detection of a wide range of clinically relevant pathogens and a limited number of antimicrobial resistance markers. More than 30% of samples showed a positive bacterial culture, with Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus the most detected pathogens. FilmArray showed an overall sensitivity and specificity of 89.6% and 98.3%, respectively, with a negative predictive value of 99.7%. The molecular test significantly reduced the turn-around-time (TAT) and increased the rates of microbial detection. Most cases missed by culture were characterized by low bacterial loads (104-105 copies/mL). FilmArray missed a list of pathogens not included in the molecular panel, especially Stenotrophomonas maltophilia (8 cases). FilmArray can be useful to detect bacterial pathogens in lower respiratory tract specimens of COVID-19 patients, with a significant decrease of TAT. The test is particularly useful to rule out bacterial co-infections and avoid the inappropriate prescription of antibiotics.


Subject(s)
Bacteria/isolation & purification , Bacterial Typing Techniques , COVID-19/complications , COVID-19/microbiology , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections/microbiology , Adult , Bacteria/classification , Coinfection/microbiology , Humans , Intensive Care Units , Respiratory Tract Infections/etiology , Retrospective Studies , Sensitivity and Specificity
6.
The New Microbiologica ; 43(4):149, 2020.
Article in English | ProQuest Central | ID: covidwho-1136732

ABSTRACT

Data on the involvement of the ocular surface and its relationship with Coronavirus disease 2019 (COVID-19) are still minimal and not univocal. The respiratory tract is the structure most affected by COVID-19, and the serious form of the disease is characterized by severe pneumonia, acute respiratory distress syndrome and hypercoagulation. However, accumulating evidence shows that other organs could be reached by the virus, thus causing further comorbidities. To date, the exact route/routes of transmission of COVID-19 are still unclear. The respiratory tract is probably not the only route of transmission for this viral infection and some authors have also speculated that COVID-19 droplets, or infected hands, could contaminate the conjunctiva, which could therefore represent the initial site of an infection spread. Theoretically, the role of the ocular surface, a biological site still relatively unexplored, appears scientifically relevant in understanding the Severe Acute Respiratory Syndrome - Coronavirus - 2 (SARS-CoV-2) infection. The purpose of this paper is to summarize the current literature in order to elucidate the potential role of tear and conjunctival sampling to detect SARS-CoV-2 for the diagnosis of COVID-19 and to monitor patients during follow-up.

7.
Front Public Health ; 8: 620222, 2020.
Article in English | MEDLINE | ID: covidwho-1121963

ABSTRACT

Introduction: Few data on the diagnostic performance of serological tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are currently available. We evaluated sensitivity and specificity of five different widely used commercial serological assays for the detection of SARS-CoV-2-specific IgG, IgM, and IgA antibodies using reverse transcriptase-PCR assay in nasopharyngeal swab as reference standard test. Methods: A total of 337 plasma samples collected in the period April-June 2020 from SARS-CoV-2 RT-PCR positive (n = 207) and negative (n = 130) subjects were investigated by one point-of-care lateral flow immunochromatographic assay (LFIA IgG and IgM, Technogenetics) and four fully automated assays: two chemiluminescence immunoassays (CLIA-iFlash IgG and IgM, Shenzhen YHLO Biotech and CLIA-LIAISON® XL IgG, DiaSorin), one electrochemiluminescence immunoassay (ECLIA-Elecsys® total predominant IgG, Roche), and one enzyme-linked immunosorbent assay (ELISA IgA, Euroimmune). Results: The overall sensitivity of all IgG serological assays was >80% and the specificity was >97%. The sensitivity of IgG assays was lower within 2 weeks from the onset of symptoms ranging from 70.8 to 80%. The LFIA and CLIA-iFlash IgM showed an overall low sensitivity of 47.6 and 54.6%, while the specificity was 98.5 and 96.2%, respectively. The ELISA IgA yielded a sensitivity of 84.3% and specificity of 81.7%. However, the ELISA IgA result was indeterminate in 11.7% of cases. Conclusions: IgG serological assays seem to be a reliable tool for the retrospective diagnosis of SARS-CoV-2 infection. IgM assays seem to have a low sensitivity and IgA assay is limited by a substantial rate of indeterminate results.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , ROC Curve , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
8.
Front Neurol ; 11: 587226, 2020.
Article in English | MEDLINE | ID: covidwho-914438

ABSTRACT

Introduction: Neurological manifestations are emerging as relatively frequent complications of corona virus disease 2019 (COVID-19), including stroke and encephalopathy. Clinical characteristics of the latter are heterogeneous and not yet fully elucidated, while the pathogenesis appears related to neuroinflammation in a subset of patients. Case: A middle-aged man presented with acute language disturbance at the emergency department. Examination revealed expressive aphasia, mild ideomotor slowing, and severe hypocapnic hypoxemia. Multimodal CT assessment and electroencephalogram (EEG) did not reveal any abnormalities. COVID-19 was diagnosed based on chest CT findings and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription PCR (RT-PCR) on nasopharyngeal swab. The following day, neurological symptoms progressed to agitated delirium and respiratory status worsened, requiring admission to the ICU and mechanical ventilation. Brain MRI and cerebrospinal fluid (CSF) studies were unremarkable. RT-PCR for SARS-CoV-2 on CSF was negative. He received supportive treatment and intravenous low-dose steroids. His neurological and respiratory status resolved completely within 2 weeks. Conclusions: We report a patient with reversible COVID-19-related encephalopathy presenting as acute aphasia, mimicking stroke or status epilepticus, eventually evolving into delirium. Although large-vessel stroke is frequently encountered in COVID-19, our case suggests that focal neurological deficits may occur as the earliest feature of encephalopathy. Neurological status reversibility and the absence of abnormalities on brain MRI are consistent with a functional rather than a structural neuronal network impairment.

10.
Infection ; 49(2): 333-337, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-691796

ABSTRACT

BACKGROUND: Since the end of February 2020, the Coronavirus Disease 2019 (COVID-19) outbreak rapidly spread throughout Italy and other European countries, but limited information has been available about its characteristics in HIV-infected patients. METHODS: We have described a case series of patients with HIV infection and COVID-19 diagnosed at the S.Orsola Hospital (Bologna, Italy) during March and April, 2020. RESULTS: We reported a case series of 26 HIV-infected patients with COVID-19. Nineteen subjects were men, the median age was 54 years, 73% of patients had one or more comorbidities. Only 5 patients with interstitial pneumonia were hospitalized, but there were no admissions to intensive care unit and no deaths. CONCLUSIONS: In our experience, COVID-19 associated with HIV infection had a clinical presentation comparable to the general population and was frequently associated with chronic comorbidities.


Subject(s)
COVID-19/epidemiology , HIV Infections/epidemiology , Adult , Aged , CD4 Lymphocyte Count , COVID-19/diagnosis , COVID-19/therapy , Comorbidity , Female , HIV-1 , Humans , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL